MULTIPLICATIVE SET OF IDEMPOTENTS IN A SEMIPERFECT RING

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GRAPH WHICH RECOGNIZES IDEMPOTENTS OF A COMMUTATIVE RING

In this paper we introduce and study a graph on the set of ideals of a commutative ring $R$. The vertices of this graph are non-trivial ideals of $R$ and two distinct ideals $I$ and $J$ are adjacent if and only $IJ=Icap J$. We obtain some properties of this graph and study its relation to the structure of $R$.

متن کامل

The primitive idempotents of the p-permutation ring

Let G be a finite group, let p be a prime number, and let K be a field of characteristic 0 and k be a field of characteristic p, both large enough. In this note we state explicit formulae for the primitive idempotents of K ⊗Z ppk(G), where ppk(G) is the ring of p-permutation kG-modules. AMS Subject Classification : 19A22, 20C20.

متن کامل

Smarandache Idempotents in finite ring Zn and in Group Ring ZnG

In this paper we analyze and study the Smarandache idempotents (S-idempotents) in the ring Zn and in the group ring ZnG of a finite group G over the finite ring Zn. We have shown the existance of Smarandache idempotents (S-idempotents) in the ring Zn when n = 2 p (or 3p), where p is a prime > 2 (or p a prime > 3). Also we have shown the existance of Smarandache idempotents (S-idempotents) in th...

متن کامل

A Note on the Multiplicative Group of a Division Ring

Let K be a noncommutative division ring with center Z and multiplicative group K*. Hua [2; 3] proved that (i) K*/Z* is a group without center, and (ii) K* is not solvable. A generalization (Theorem 1) will be given here which contains as a special case (Theorem 2) the fact that K*/Z* has no Abelian normal subgroups. This latter theorem obviously contains both (i) and (ii). As a further corollar...

متن کامل

Semiperfect coalgebras over rings

Our investigation of coalgebras over commutative rings R is based on the close relationship between comodules over a coalgebra C and modules over the dual algebra C∗. If C is projective as an R-module the category of right C-comodules can be identified with the category σ[C∗C] of left C∗-modules which are subgenerated by C. In this context semiperfect coalgebras are described by results from mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2011

ISSN: 1015-8634

DOI: 10.4134/bkms.2011.48.5.1033